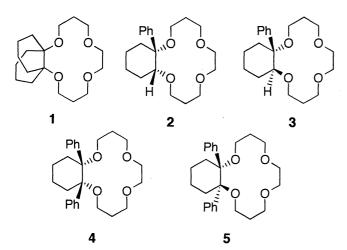
Synthesis and Lithium Ion-Selectivity of 2-Phenylcyclohexanoand 2,3-Diphenylcyclohexano-14-crown-4 Derivatives

Kazuya Kobiro, Mayumi Kaji, Sachiko Tsuzuki, Yoshito Tobe,*† Yuko Tuchiya,† Koichiro Naemura,† and Koji Suzuki††

Niihama National College of Technology, 7-1 Yagumo-cho, Niihama, Ehime 792


†Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560

††Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223

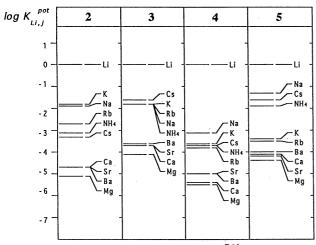
(Received June 21, 1995)

Cis- and trans-2-phenylcyclohexano-14-crown-4 and cis- and trans-2,3-diphenylcyclohexano-14-crown-4 were prepared and their ion selectivity was determined by means of extraction of alkali metal picrates, stability constants, and ion-selective electrodes. Cis diphenyl derivative exhibits the highest lithium ion-selectivity of the four ionophores examined, which is as high as that of decalino-14-crown-4, one of the best Li⁺-selective ionophores.

Much interest has been focused on a highly lithium ionselective electrode in connection with the medical and clinical use of lithium carbonate for the therapy of manic-depressive psychosis. 1 However, little ionophores have been synthesized which possess sufficient Li+/Na+ selectivity for the practical use.² We reported previously that 14-crown-4 derivatives such as decalino-14-crown-4 (1) bearing a bulky substituent on one side of the ethano bridge exhibited excellent Li⁺/Na⁺ selectivity.³ Our design is based on the steric hindrance which prevents the formation of 2:1 (crown ether: cation) complex with larger Na+, leading to high selectivity toward Li⁺. The major drawback in 1 is its scarce availability due to the low yield in the final cylization step of the synthesis.^{3a} In order to find an alternative and readily available substituent which provides effective steric hindrance in complexation, we prepared cis- and trans-2phenylcyclohexano-14-crown-4 (2) and (3) and cis- and trans-2,3-diphenylcyclohexano-14-crown-4 (4) and (5), and

investigated their ion selectivity by means of extraction of alkali metal picrates, stability constants with alkali metal perchlorates, and ion-selective electrodes.⁴

The cyclohexanediol units **6**, **7**, and **9** were prepared according to the procedures previously reported. ^{4,5} Since stereoselective synthesis of cis diphenyl diol **8** was not reported, it was prepared in 24% yield by the pinacol coupling of 1,6-diphenylhexane-1,6-dione ⁶ using titanium reagents prepared from TiCl₄ and Mg(Hg). ⁷ Condensation of **6-9** with bis-*p*-toluenesulfonate of 4,7-dioxadecane-1,10-diol was carried out in tetrahydrofuran in the presence of NaH and LiClO₄ under high dilution conditions. While crown ethers **2-4** were obtained in satisfactory yields of 50, 27, and 35%, respectively, the yield of **5** was low (3%). ⁸


In order to estimate the ion selectivity of 2-5, extraction of alkali metal picrates was undertaken in the water/dichloromethane system. As shown in Table 1, trans derivatives 3 and 5 exhibit low extractability in every case, leading to the low ion selectivity. By contrast, while Li+/Na+ selectivity of cis monophenyl derivative 2 is only moderate, cis diphenyl 4 exhibits large extractability for Li+ as well as high Li+/Na+ selectivity, which are as large as those of decalino-1. The stability constants (Ka) of the complexes between 2-5 with LiClO₄ were determined in cyclohexanone at 80 °C by the ⁷Li NMR titration method.⁹ The Ka values for 2-5 are 5.1×10^3 , 4.0×10^2 , 7.0×10^3 , and 1.3×10^2 dm³ mol⁻¹, respectively.¹⁰ The low extractability of trans isomers 3 and 5 is, therefore, ascribed to their low complexation ability, which is probably due to the conformational rigidity of the phenyl-substituted trans-cyclohexane units. 11

Ion selectivity of **2-5** was also measured by potentiometric PVC-membrane electrodes containing the crown ethers. ¹² As shown in Figure 1, cis diphenyl derivative **4** exhibits high

Table 1. Extractability of alkali metal picrates in water/dichloromethane system by ionophores 1-5 ^a

Crown	Extractability / %					Selectivity
ether	Li+	Na+	K+	Rb+	Cs+	Li+/Na+
2	42.8	7.7	1.4	0.7	0.6	5.6
3	3.1	0.8	0.7	0.8	0.9	3.9
4	74.1	4.8	1.1	1.0	1.1	15.4
5	1.6	0.6	0.6	0.5	0.6	2.7
1 ^b	80.6	5.0	1.2	1.2	0.7	16.1

 $[^]a$ [ionophore]=7.0x10-4 M, [picric acid]=7.0x10-5 M, [alkali metal hydroxide]=1.0x10-1 M, 25.0±0.1 °C. b Ref. 3a.

Figure 1. Selectivity coefficients ($log\ K_{Li,j}^{pot}$; j = interfering ion) of the PVC-matrix membrane electrodes based on ionophores **2-5**. The membrane compositions were 3% (by weight) ionophore, 67.3-67.4% membrane solvent BBPA (bis(butylpentyl) adipate), 20 mol% (relative to the ionophore) potassium tetrakis(p-chlorophenyl)borate, and 28.8-28.9% PVC. The measurements were carried out at 25.0±0.5 °C.

selectivity for Li⁺, in good agreement with the extraction experiments. The selectivity coefficients ($log\ K_{Li,Na}^{pot}$) of 2-5 are -1.9, -1.8, -3.1, and -1.3, respectively. The selectivity of 4 well compares that of 1 (-3.3).^{3b}

In summary, cis diphenyl derivative 4 exhibits Li⁺-selectivity as high as that of decalino-1, one of the best Li⁺-selective ionophores for ion-selective electrodes so far known. Since the phenyl groups in 4 allows introduction of functional groups, the ion selectivity may be tunable using the electronic and

coordinative properties of the additional substituents.

References and Notes

- 1 A. D. Amdisen, "Handbook of Lithium Therapy," MTP Press, Lancaster (1986).
- 2 E. Metzger, D. Ammann, D. Asper, and W. Simon, Anal. Chem., 58, 132 (1986); K. Kimura, O. Oishi, T. Murata,, and T. Shono, Anal. Chem., 59, 2331 (1987); T. Tohda, H. Sasakura, K. Suzuki, and T. Shirai, Proc. the 54th Chem. Soc. Japan Annual Meeting, Tokyo, p 473 (1987); H. Sugihara, T. Okada, and K. Hitatani, Chem. Lett., 2391 (1987); A. S. Attiyat, G. D. Christian, R. Y. Xie, X. Wen, and R. A. Bartsch, Anal. Chem., 60, 2561 (1988); K. Suzuki, K. Hayashi, K. Tohda, K. Watanabe, M. Ouchi, T. Hakushi, and Y. Inoue, Anal. Lett., 24, 1085 (1991); R. Kataky, P. E. Nicholson, D. Parker, A. K. Covington, Analyst, 116, 135 (1991).
- a) K. Kobiro, T. Hiro, T. Matsuoka, K. Kakiuchi, Y. Tobe, and Y. Odaira, Bull. Chem. Soc. Jpn., 61, 4164 (1988); b) K. Kobiro, Y. Tobe, K. Watanabe, H. Yamada, and K. Suzuki, Anal. Lett., 26, 49 (1993); c) K. Suzuki, H. Yamada, K. Sato, K. Watanabe, H. Hisamoto, Y. Tobe, and K. Kobiro, Anal. Chem., 65, 3404 (1993).
- 4 For the use of three of these units as the chiral centers of 18-crown-6 derivatives; K. Naemura, H. Miyabe, and Y. Shingai, J. Chem. Soc., Perkin Trans. 1, 1991, 957.
- 5 G. Berti, F. Bottari, B. Macchia, and F. Macchia, Tetrahedron, 21, 3277 (1965); G. Berti and F. Macchia, Tetrahedron Lett., 1965, 3421.
- 6 R. C. Fuson and J. T. Walker, Org. Syn., Coll. Vol., II, 169 (1943).
- E. J. Corey, R. L. Danheiser, and S. Chandrasekaran, J. Org. Chem., 41, 260 (1976).
 The low yield of 5 can be attributed to the strain developed in
- 8 The low yield of 5 can be attributed to the strain developed in the transition state of cyclization in which both of the phenyl groups adopt axial position. Indeed, MM2 calculations for 4 and 5 indicate that the latter is less stable by 10.3 kcal/mol.
- 9 For every host-guest systems examined, the complexed and uncomplexed metal ions can equilibrate on the NMR time scale under these conditions.
- 10 The stability constants of **2** and **4** with NaClO₄ were determined to be 2.8x10 and 2.3x10 dm³ mol⁻¹, respectively, under the similar conditions using ²³Na NMR, from which the Li⁺/Na⁺ selectivities of 180 and 300 were estimated, respectively. The corresponding *Ka* with Na⁺ for **3** and **5** were too small to be determined.
- 11 The ¹³C NMR spectra of cis derivatives **2** and **4** are temperature-dependent; at a low temperature (-80°C), the peaks appear as sets of those due to two conformers (for **2**, 1:3 ratio and for **4**, inevitably 1:1). On the other hand, the ¹³C NMR of trans isomers **3** and **5** are temperature-independent, indicating that the cyclohexane rings are fixed in conformations in which the phenyl groups adopt axial positions.
- 12 Measurements were carried out according to the procedures previously described: K. Suzuki, K. Tohda, H. Aruga, M. Matsuzoe, H. Inoue, and T. Shirai, *Anal. Chem.*, 60, 1714 (1988).